
SEIVIIGdNDUCtORS
3501 ED BLUESTEIN BLVD., AUSTIN, TEXAS 78721

MC6809

8-BIT MICROPROCESSING UNIT

The MC6809 is a revolutionary high-performance 8-bit microprocessor

which supports modern programming techniques such as position indepen-
dence, reentrancy, and modular programming.

This third-generation addition to the M6800 Family has major architectural

improvements which include additional registers, instructions, and addressing
modes.

The basic instructions of any computer are greatly enhanced by the

presence of powerful addressing modes. The MC6809 has the most complete

set of addressing modes available on any 8-bit microprocessor today.
The MC6809 has hardware and software features which make it an ideal

processor for higher level language execution or standard controller applica-
tions.

MC6800 COMPATIBLE

• Hardware - Interfaces with All M6800 Peripherals

• Software - Upward Source Code Compatible Instruction Set and
Addressing Modes

ARCHITECTURAL FEATURES

• Two 16-Bit Index Registers
• Two 16-Bit Indexable Stack Pointers

• Two 8-Bit Accumulators can be Concatenated to Form One
16-Bit Accumulator

• Direct Page Register Allows Direct Addressing Throughout Memory

HARDWARE FEATURES

• On-Chip Oscillator (Crystal Frequency = 4x E)
• DMA/BREQ Allows DMA Operation on Memory Refresh

• Fast Interrupt Request Input Stacks Only Condition Code Register

and Program Counter

• MRDY Input Extends Data Access Times for Use with Slow
Memory

• Interrupt Acknowledge Output Allows Vectoring by Devices

• Sync Acknowledge Output Allows for Synchronization to External
Event

HMOS

(HIGH DENSITY N-CHANNEL, SILICON-GATE) 8-BIT

MICROPROCESSING

UNIT

Single Bus-Cycle RESET
Single 5-Volt Supply Operation
NMi Inhibited After RESET Until After First Load of Stack Pointer

Early Address Valid Allows Use with Slower Memories

Early Write Data for Dynamic Memories

SOFTWARE FEATURES

• 10 Addressing Modes

• 6800 Upward Compatible Addressing Modes

• Direct Addressing Anywhere in Memory Map

• Long Relative Branches

• Program Counter Relative
• True Indirect Addressing

• Expanded Indexed Addressing:

0-, 5-, 8-, or 16-Bit Constant Offsets
8- or 16-Bit Accumulator Offsets

Auto Increment/ Decrement by 1 or 2

• Improved Stack Manipulation
• 1464 Instructions with Unique Addressing Modes

• 8 X 8 Unsigned Multiply
• 16-Bit Arithmetic

• Transfer/ Exchange All Registers

• Push/ Pull Any Registers or Any Set of Registers
• Load Effective Address

L SUFFIX
CERAMIC PACKAGE

CASE 715

P SUFFIX
PLASTIC PACKAGE

CASE 711

S SUFFIX
CERDIP PACKAGE

CASE 734

PIN ASSIGNMENT

vssC

NMl[
Trq[

FlRQ[BS[BA[

vccC
A0[
A1[

A2[

A3

A4[
A5[

A6[

A7

A8 A9

A10

All

A12

1 •

2

3

4

5

6

7

8

9

10

11

12

13

14 15

16

17
18

19

20

vy
40

39

38

37
36
35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

:halt

iXTAL
[EXTAL
]RESET

nMRDY

]Q

3DMA/BREQ

]R/W

]D0

noi

]D2

]D3

]D4

]D5

]D6

]D7

3A15

]A14]A13

©MOTOROLA INC., 1983

DS9845-R2

MAXIMUM RATINGS Rating

Symbol
Value Unit

Supply Voltage

vcc

-0.3 to +7.0
V

Input Voltage

V,n

-0.3 to +7.0
V

Operating Temperature Range
MC6809, MC68A09, MC68B09
MC6809C, MC68A09C, MC68B09C

Ta

Tl to Th

0 to +70 - 40 to + 85

°c

Storage Temperature Range

Tstg

-55 to +150

°c

THERMAL CHARACTERISTICS
Characteristic

Symbol
Value Unit

Thermal Resistance
Ceramic
Cerdip

Plastic

^JA

50

60 100

°C/W

This device contains circuitry to protect the

inputs against damage due to high static
voltages or electric fields; however, it is ad-

vised that normal precautions be taken to

avoid application of any voltage higher than

maximum rated voltages to this high im-
pedance circuit. Reliability of operation is

enhanced if unused inputs are tied to an ap-
propriate logic voltage levels (e.g., either

VSS or Vcc).

(i:

POWER CONSIDERATIONS

The average chip-junction temperature, Tj, in °C can be obtained from:
Tj = Ta+(Pd»^JA)

Where:

T/\ = Ambient Temperature, °C

^JA- Package Thermal Resistance, Junction-to-Ambient, °C/W
Pd^pint + prort

PlNT^ICCxVcc, Watts - Chip Internal Power

PpORT-Port Power Dissipation, Watts - User Determined

For most applications PpORT-^PjNT and can be neglected. PpoRT may become significant if the device is configured to drive Darlington bases or sink LED loads.

An approximate relationship between Pq and Tj (if PpoRT is neglected) is:
Pd=K^(Tj + 273°C) (2)

Solving equations 1 and 2 for K gives:

K = PD«(TA + 273°C) + ejA»PD2 (3)
Where K is a constant pertaining to the particular part. K can be determined from equation 3 by measunng Pq (at equilibrium)

for a known Ta. Using this value of K the values of Pp and Tj can be obtained by solving equations (1) and (2) iteratively for anv value of Ta.

ELECTRICAL CHARACTERISTICS (Vcc = 5.0 V ±5%, Vss = 0, Ta=Tl to Th unless otherwise noted)
Characteristic

Input High Voltage Logic, EXTAL RESET

Input Low Voltage

Input Leakage Current

(Vin = 0 to 5.25 V, Vcc = max)

Logic, EXTAL, RESET
Logic

dc Output High Voltage

'lLoad= -205/iA, Vcc = nnin)
'lLoad= -145,iA, Vcc = min)

"Load "=- 100 mA, Vcc = min)

_D0-D7

A0-A15, R/W, Q, E

BA, BS

dc Output Low Voltage

{lLoad = 2.0mA, Vcc = nnin)

Internal Power Dissipation (Measured at Ta = 0°C in Steady State Operation)

Capacitance *
{Vin = 0, Ta = 25°C, f=1.0 MHz)

Frequency of Operation
(Crystal or External Input)

D0-D7, RE^ET

Logic Inputs, EXTAL, XTAL
A0-A15, R/W, BA, BS

MC6809
MC68A09

MC68B09

Hi-Z (Off State) Input Current

(V|n = 0.4to2.4 V, Vcc=max)

D0-D7 A0-A15, R/W

Symbol

V|H

\^IHR

VOH

Vol

Pint

fXTAL
ITS!

Min

Vss + 2.0
Vss + 4.0

Vss-0.3

Vss + 2.4
Vss + 2.4
Vss + 2.4

0.4
0.4 0.4

Typ

10
10

Max

Vcc
Vcc

Vss + 0.8 2.5

Vss + 0.5
15
15

15

2.0
10

100

Capacitances are periodically tested rather than 100% tested.

Unit

^A

W

PF

PF

MHz

nA

MOTOROLA Semiconductor Products inc.

FIGURE 1 - BUS TIMING

J-

\

R/W, Address,
BA, BS

Read Data

Write Data

<D
<!>

©

<£>

(2>

©
-^^

>

>

J^^

*©

-© ©^ ©-

/

MPU Read Data

<I>

'^.

©

<

Notes
r

\

<!>

©

*©

/

*<D

M

-^^

<->

BUS TIMING CHARACTERISTICS (See Notes 1 and 2)

Ident.

Number
Characteristics

Symbol

MC6809 MC68A09 MC68B09
Unit

Min
Max Min Max Min Max

1 Cycle Time (See Note 5)

^cyc

1.0

10

0.667
10

0.5

10

lis

2 Pulse Width, E Low

PWel

430
5000

280
5000

210
5000

ns

3 Pulse Width, E High

PWeh

450 15500 280 15700

220
15700

ns

4 Clock Rise and Fall Time

Tr, tf

-

25

- 25 -

20

ns

5 Pulse Width, Q High

PWqh

430

5000
280

5000 210
5000

ns

6 Pulse Width, Q Low

PWql

450 15500 280
15700 220

15700
ns

7 Delay Time, E to Q Rise

tAVS

200 250 130 165 80 125

ns

9
Address Hold Time* (See Note 4)

tAH

20 -

20

- 20 -

ns

10 BA, BS, R/W, and Address Valid Time to Q Rise

tAQ

50 - 25 - 15 - ns

17 Read Data Setup Time

tDSR

80 - 60 - 40 -

ns

18 Read Data Hold Time

tDHR

10 -

10

-

10

-

ns

20 Data Delay Time from Q

tDDQ

- 200 -
140

-

110

ns

21

Write Data Hold Time*

tDHW

30 -

30

- 30 -

ns

29 Usable Access Time (See Note 3)

tACC

695 - 440 - 330 -

ns
Processor Control Setup Time (MRDY, Interrupts, DMA/BREQ,

HALT, RESET) (Figures 6, 8, 9, 10, 12, and 13)

tpcs

200

- 140 - 110 -

ns
Crystal Oscillator Start Time (Figures 6 and 7)

tRC

- 100 -
100

-
100

ms Processor Control Rise and Fall Time (Figures 6 and 8)
tPCr- tpcf -

100
- 100 —

100

ns Address and data hold times are periodically tested rather than 100% tested.

NOTES:

1. Voltage levels shown are V|_<0.4 V, Vh>2.4 V, unless otherwise specified.
2. Measurement points shown are 0.8 V and 2.0 V, unless otherwise specified.

3. Usable access time is computed by: 1-4-7 max + 10- 17.

4. Hold time (̂) for BA and BS is not specified.

5. Maximum tcyc during MRDY or DMA/BREQ is 16 ns.

(
&

MOTOROLA Semiconductor Products Inc.

FIGURE 2 - MC6809 EXPANDED BLOCK DIAGRAM

Internal Three-State Control

>-Q

FIGURE 3 - BUS TIMING TEST LOAD

5.0 V

MMD6150

or Equiv.

Test Point 0-| f M-

R

Rl = 2.2 k

MMD7000

or Equiv.

PROGRAMMING MODEL

As shown in Figure 4, the MC6809 adds three registers to

the set available in the MC6800. The added registers Include

a direct page register, the user stack pointer, and a second
index register.

ACCUMULATORS (A, B, D)

The A and B registers are general purpose accunnulators

which are used for arithmetic calculations and manipulation

of data.

Certain instructions concatenate the A and B registers to

form a single 16-bit accumulator. This is referred to as the D

register, and is formed with the A register as the most signifi-
cant byte.

C = 30 pF for BA, BS

130 pF for D0-D7, E, Q_
90 pF for A0-A15, R/W

11.7 kO for D0-D7 _
16.5 kQ for A0-A15, E, Q, R/W
24 kn for BA, BS

DIRECT PAGE REGISTER (DP)

The direct page register of the MC6809 serves to enhance

the direct addressing mode. The content of this register ap-

pears at the higher address outputs (A8-A15) during direct
addressing Instruction execution. This allows the direct
mode to be used at any place in memory, under program

control. To ensure M6800 compatibility, all bits of this

register are cleared during processor reset.

MOTOROLA Semiconductor Products Inc.

FIGURE 4 - PROGRAMMING MODEL OF THE MICROPROCESSING UNIT

15 0

X - Index Register

Y — Index Register

U — User Stack Pointer

S — Hardware Stack Pointer

PC

A B

Pointer Registers

Program Counter
Accumulators

7 0

DP

7 0

E F H 1 N Z V c

Direct Page Register

INDEX REGISTERS (X, Y)

The Index registers are used in indexed mode of address-
ing. The 16-bit address in this register takes part in the

calculation of effective addresses. This address nnay be used

to point to data directly or may be modified by an optional

constant or register offset. During some indexed modes, the

contents of the index register are incremented or decrement-
ed to point to the next item of tabular type data. All four

pointer registers (X, Y, U, S) may be used as index registers.

STACK POINTER (U,S)

The hardware stack pointer (S) is used automatically by

the processor during subroutine calls and interrupts. The

stack pointers of the MC6809 point to the top of the stack, in

contrast to the MC68(X) stack pointer, which pointed to the

next free location on the stack. The user stack pointer (U) is

controlled exclusively by the programmer. This allows

arguments to be passed to and from subroutines with ease.

Both stack pointers have the same indexed mode addressing

capabilities as the X and Y registers, but also support Push

and Pull instructions. This allows the MC6809 to be used effi-
ciently as a stack processor, greatly enhancing its ability to

support higher level languages and modular programming.

PROGRAM COUNTER

The program counter is used by the processor to point to

the address of the next instruction to be executed by the pro-
cessor. Relative addressing is provided allowing the program

counter to be used like an index register in some situations.

CONDITION CODE REGISTER

The condition code register defines the state of the pro-
cessor at any given time. See Figure 5.

FIGURE 5 - CONDITION CODE REGISTER FORMAT

Carry

Overflow
Zero

Negative
IRQ Mask
Half Carry
FIRQ Mask Entire Flag

CONDITION CODE REGISTER

DESCRIPTION
BIT 0 (C)

Bit 0 is the carry flag, and is usually the carry from the

binary ALU. C is also used to represent a 'borrow' from subtract-like instructions (CMP, NEG, SUB, SBC) and is the

complement of the carry from the binary ALU.

BIT 1 (V)

Bit 1 is the overflow flag, and is set to a one by an opera-
tion which causes a signed twos complement arithmetic

overflow. This overflow is detected in an operation in which

the carry from the MSB in the ALU does not match the carry

from the MSB-1.

BIT 2 (Z)

Bit 2 is the zero flag, and is set to a one if the result of the

previous operation was identically zero.

® MOTOROLA Semiconductor Products Inc.

BIT3(N)

Bit 3 is the negative flag, which contains exactly the value
of the MSB of the result of the preceding operation. Thus, a
negative twos-complement result will leave N set to a one.

BIT 4 (I)

Bit 4 is the IRQ mask bit. The processor will not recognize
interrupts 1iom the IRQ line if this bit is set to a one. NMI,
FIRQ, IRQ, RESET, and SWI all set I to a one. S\A/I2 and
S WIS do not affect I.

BIT 5(H)

Bit 5 is the half-carry bit, and is used to indicate a carry
from bit 3 in the ALU as a result of an 8-bit addition only
(ADC or ADD). This bit is used by the DAA instruction to
perform a BCD decimal add adjust operation. The state of

this flag is undefined in all subtract-like instructions.

BIT 6(F)

Bit 6 is the FIRQ mask bit. The processor will not
recognize interrupts from the FIRQ line if this bit is a one.
NMI, FIRQ, SWI, and RESET all set F to a one. TRQ, SWI2,
and SWI3 do not affect F.

BIT 7 (E)

Bit 7 is the entire flag, and when set to a one indicates that
the complete machine state (all the registers) was stacked,
as opposed to the subset state (PC and CO. The E bit of the

stacked CC is used on a return from interrupt (RTI) to deter-
mine the extent of the unstacking. Therefore, the current E

left in the condition code register represents past action.

PIN DESCRIPTIONS

POWER (Vss, Vcc)

Two pins are used to supply power to the part; Vss is
ground or 0 volts, while Vcc is + 5.0 V + 5% .

ADDRESS BUS (A0-A15)

Sixteen pins are used to output address information from
the MRU onto the address bus. When the processor does

not require ^he bus for a data transfer, it will output address

FFFF-js, R/W = 1 , and BS = 0; this is a "dummy access" or
VMA cycle. Addresses are valid on the rising edge of Q. All
address bus drivers are made high impedance when output
bus available (BA) is high. Each pin will drive one Schottky
TTL load or four LSTTL loads, and 90 pF.

DATA BUS (D0-D7)

These eight pins provide communication

bidirectional data bus. Each pin will d-ive o
load or four LSTTL loads, and 130 pF.

READ/WRITE (R/W)

This signal indicates the direction of data transfer on the
data bus. A low indicates that the MRU is writing data onto

the data_bus. R/W is made high impedance when BA is
high. R/W is valid on the rising edge of Q.

RESET

A low level on this Schmitt-trigger input for greater than
one bus cycle will reset the MRU, as shown in Figure 6. The

reset vectors are fetched from locations FFFEis^d FFFF-jg
(Table 1) when interrupt acknowledge is true, (BA»BS= 1).
During initial power on, the RESET line should be held low
until the clock oscillator is fully operational. See Figure 7.

Because the MC6809 RESET pin has a Schmitt-trigger in-
put with a threshold voltage higher than that of standard

peripherals, a simple R/C network rnay be used to reset the
entire system. This higher threshold voltage ensures that all
peripherals are out of the reset state before the processor.

HALT

A low level on this input pin will cause the MRU to stop
running at the end of the present instruction and remain
halted indefinitely without loss of data. When halted, the BA

output is driven high indicating the buses are high im-
pedance. BS is also high which indicates the processor is in

the halt or bus grant state. While halted, the MRU will not

respond to external real-time requests (FIRQ, IRQ) although
DMA/BREQ will always be accepted, and NMTor RESET will
be latched for later response. During the halt state, Q and E
continue to run normally. If the MRU is not running (RESET,

DMA/BREQ), a halted state (BA*BS= 1) can be achieved by
pulling HALT low while RESET is still low. If DMA/BREQ
and HALT are both pulled low, the processor will reach the
last cycle of the instruction (by reverse cycle stealing) where
the machine will the become halted. See Figure 8.

BUS AVAILABLE, BUS STATUS (BA, BS)

The bus available output is an indication of an internal
control signal which makes the MOS buses of the MRU high
impedance. This signal does not imply that the bus will be
available for more than one cycle. When BA goes low, a
dead cycle will elapse before the MRU acquires the bus.

The bus status output signal, when decoded with BA,
represents the MRU state (valid with leading edge of Q).

■vith the system

3 Schottky TTL

MPU State
MPU State Definition

BA

BS

0 0 Normal (Running)

0 1 Interrupt or Reset Acknowledge
1 0 Sync Acknowledge

1 1 Halt or Bus Grant Acknowledge

MOTOROLA Semiconductor Products Inc,

0

I
CO

§

o*

o

3
Q.
C
o

3"

o

o

3"

o

vcc

Q

E

RESET

Vqc min.

FIGURE 6 - RESET TIMING

-^f- n + 1 n + 2 n + 3 n + 4 n + 5 n + 6 n + 7 n + 8

Kn->K — >|< — >K — >X — >j< — >K — >K — >K — >| , m + 1 m + 2 m- h<-m>(< >|< >|.^-
3 nn + 4 m + 5 m + 6 m + 7 nn + 8 m + 9 m+10
H< — >l< — >|< — >|< >|< — H< — *+< — H

-tRC

"V|HR

^k-tpcf
vifi^ "JMMMm

\
^^tpcs

NewPC+1

FFFE FFFE FFFE FFFE FFFE FFFF FFFF New PC

■A k^PCr

Address

Bus
See Note 3

Data

,,, \\\\\\\\\v;\\\\\\\\^
BA A\\\\\\\Vi\\\T^

New PC
Hi Byte

New PC Low Byte

VMA

XZD(

:7zzx"

)C^>CZX

New PC +1

A A A A /\
FFFF FFFF New PC

xz New PC Hi Byte

VMA

xizx:
New PC First

Lo Byte Instruction

BS^SS^^Si. f

"V

-^4-

y^

"\

NOTES: 1. Parts with date codes prefixed by 7F or 5A will come out of RESET one cycle sooner than shown.
2. Tinning pneasurennents are referenced to and from a low voltage of 0,8 volts and a high voltage of 2.0 volts, unless otherwise noted.
3. FFFE appears on the bus during RESET low time. Following the active transition of the RESET line, three more FFFE cycles will appear followed

by the vector fetch.

FIGURE 7 - CRYSTAL CONNECTIONS AND OSCILLATOR START UP

'>^

vcc y ^ Vcc n^ii^- ̂ ^

E

I")

CC

RESET ^\^

< tRC >

rLTLTLr

NOTE: Waveform measurements for ail inputs and outputs are specified at logic high 2.0 V and logic low 0.8 V unless otherwise specified.

Y1

Cjn

Cout

8 MHz
18 pF 18 pF

6 MHz 20 pF 20 pF

4 MHz
24 pF 24 pF

MC6809

38

. 1

Y1 39

"' 1

L __ l_
out

Nominal Crystal Parameters

3.58 MHz 4.00 MHz 6.0 MHz 8.0 MHz

Rs

60Q
50 Q

30-50 fi 20-40 n

CO
3.5 pF

6.5 pF

4-6 pF
4-6 pF

CI 0.015 pF 0.025 pF 0,01-0.02 oF 0.01-0.02 pF

Q >40k
>30k >20k >20k

All parameters are 10%

NOTE: These are representative AT-cut crystei parameters only. Crystals of other

types of cut may also be used.

Typical PC Board Layout

.<— for Crystal Area — >
20 mm max.

^ Other Signals
^ ̂ ^ Not Wired In

6 38

'his Area,

M; MOTOROLA Semiconductor Products inc.

2nd To Last

Last Cycle

Cycle Of Of
Current Current

^
nst.

-^^

Inst

FIGURE 8 - HALT AND SINGLE INSTRUCTION
EXECUTION FOR SYSTEM DEBUG

Dead

I Cycle I

-^f-

Halted Dead Inst Instruction Dead

^ I Cycle I Fetch | Execute: Cycle i Halted ->K H< >< — >< — >K

HALT

Address
Bus

R/W

BA

BS

Data'

Bus

XIDCDCD -(*-

X A A y

/"

7^

cix:>
Fetch Execute

-<^

\
-ii-

\

f
f

xzx:dc3 -^f- ^DC^ Instruction

Opcode
NOTE: Waveform measurennents for all inputs and outputs are specified at logic high 2.0 V and logic low 0.8 V unless otherwise specified.

INTERRUPT ACKNOWLEDGE is indicated during both

cycles of a hardware-vector-fetch (RESET, NMI, FIRQ, FRQ,
SWI, SWI2, SWI3). This signal, plus decoding of the lower
four address lines, can provide the user with an indication of

which interrupt level is being serviced and allow vectoring by
device. See Table 1 .

SYNC ACKNOWLEDGE is indicated while the MRU is

waiting for external synchronization on an interrupt line.

HALT/BUS GRANT is true when the MC6809 is in a halt

or bus grant condition.

TABLE 1 - MEMORY MAP FOR INTERRUPT VECTORS

interrupt cannot be inhibited by the program, and also has a

higher priority than Fl^, [RQ, or software interrupts. Dur-
ing recognition of an NMI, the entire machine state is saved

on the hardware stack. After reset, an NMI will not be recog-
nized until the first program load of the hardware stack

pointer (S). The pulse width of NIVTi low must be at least one

E cycle. If the NMI input does not meet the minimum set up

with respect to Q, the interrupt will not be recognized until
the next cycle. See Figure 9.

Memory Map For
Vector Locations Interrupt Vector

Description
MS

LS

FFFE FFFF RESET

FFFC FFFD NMI
FFFA FFFB SWI
FFF8

FFF6

FFF9

FFF7

IRQ

FIRQ

FFF4 FFF5 SWI2

FFF2 FFF3
SWI3

FFFO FFF1 Reserved

NON MASKABLE INTERRUPT (NMD*

A negative transition on this input requests that a non-

maskable interrupt sequence be generated. A non-maskable

FAST-INTERRUPT REQUEST (FIRQ)*

A low level on this input pin will initiate a fast interrupt se-
quence, provided its mask bit (F) in the CO is clear. This se-

quence has priority over the standard interrupt request

(IRQ), and is fast in the sense that it stacks only the contents

of the condition code register and the program counter. The

interrupt service routine should clear the source of the inter-

rupt before doing an RTI. See Figure 10.

INTERRUPT REQUEST (IRQ)*

A low level input on this pin will initiate an interrupt re-
quest sequence provided the mask bit (I) in the CC is clear.

Since IRQ stacks the entire machine state it provides a

slower response to interrupts than FIRQ. IRQ also has a

lower priority than FIRQ. Again, the interrupt service routine

should clear the source of the interrupt before doing an RTI.
See Figure 9.

*NMI, FIRQ, and IRQ requests are sannpled on the falling edge of Q. One cycle is required for synchronization before these interrupts are recog- nized. The pending interrupt(s) will not be serviced until completion of the current instruction unless a SYNC or CWAI condition is present. If IRQ
and FIRQ do not remain low until completion of the current instruction they may not be recognized. However, NMJ is latched and need only re-
mainjow for one cycle. No interrupts are recognized or latched between the falling edge of RESET and the rising edge of BS indicating RESET acknowledge.

m MOTOROLA Semiconductor Products Inc.

FIGURE 9 - IRQ AND NMI INTERRUPT TIMING

3^

Last cycle
of Current
Instruction

\< >\^r •Interrupt Stacking and Vector Fetch Sequence-

Instruction

Fetch >l< >l

m-2 I m--1 I m | m+ 1 j m + 2 | m + 3 | m + 4 | m + 5 | m + 6 | m + 7 | m + 8 | m + 9 |m + 10 | nn+ 11 |nn + 12 |m + 13 |m + 14 | mf 15| m + 16|m + 17 |m + 18| n |n+l|

o
CO

NM

o if)

NOTE- Waveform measurements for all inputs and outputs are specified at logic high = 2.0 V and logic low = 0.8 V unless otherwise specified.
Q. *..,,.._ _. E clock shown for reference only.

:3

o

mm-i

0

r
CO

I

o'
 o

o

3

O

S"

o

Last Cycle
of Current
Instruction

k >K

FIGURE 10 - FIRQ INTERRUPT TIMING

Interrupt Stacking and Vector Fetch Sequence
Instruction

Fetch ■^^< >\

nn-2 I m-1 I m I m+1 | nn + 2 I m + 3 I m + 4 I m + 5 i m + 6 I nn + 7 I m + 8 I m + 9 I n + 1 I n +

E

Q

Address
Bus

1
r

PC PC FFFF SP-I SP-2 SP-3 $FFFF $FFF6 $FFF7 $FFFF New PC NewPC+1

FIRQ

Data

\

-tpcs

1 X x — X — r--j X y x_r y j-^ r VMA PCL PCH CCR VMA New PCH New PCL VMA

R/W

BA

BS

"L

\

/ \

NOTE: Waveform measurements for all inputs and outputs are specified at logic high = 2.0 V and logic low = 0.8 V unless otherwise specified.
E clock shown for reference only.

XTAL, EXTAL

These inputs are used to connect the on-chip oscillator to

an external parallel-resonant crystal. Alternately, the pin
EXTAL nnay be used as a TTL level input for external timing

by grounding XTAL. The crystal or external frequency is four

times the bus frequency. See Figure 7. Proper RF layout

techniques should be observed in the layout of printed circuit
boards.

E, Q

E is similar to the MC6800 bus timing signal phase 2; Q is a

quadrature clock signal which leads E. Q has no parrallel on
the MC6800. Addresses from the MPU will be valid with the

leading edge of Q. Data is latched on the falling edge of E.

Timing for E and Q is shown in Figure 11.

MRDY* This input control signal allows stretching of E and Q to

extend data-access time. E and Q operate normally while
MRDY is high. When MRDY is low, E and Q may be stretch-

ed in integral multiples of quarter (Vi,) bus cycles, thus allow-
ing interface to slow memories, as shown in Figure 12(a).

During non-valid memory access (VMA cycles), MRDY has

no effect on stretching E and Q; this inhibits slowing the pro-

cessor during "don't care" bus accesses. MRDY may also be
used to stretch clocks (for slow memory) when bus control

has been transferred to an external device (through the use
of HALT and DMA/BREQ).

NOTE

Four of the early production mask sets (G7F, T5A,

P6F, T6M) require synchronization of the MRDY input
with the4f clock. The synchronization necessitates an

external oscillator as shown in Figure 12(b). The

negative transition of the MRDY signal, normally

derived from the chip select decoding, must meet the

tpcs timing. With these four mask sets, MRDY's
positive transition must occur with the rising edge of
4f.

In addition, on these same mask sets, MRDY will

not stretch the E and Q signals if the machine is ex-
ecuting either a TFR or EXG instruction during the

HALT high-to-low transition. If the MPU executes a
CWAI instruction, the machine pushes the internal

registers onto the stack and then awaits an interrupt.

During this waiting period, it is possible to place the

MPU into a halt mode to three-state the machine, but
MRDY will not stretch the clocks.

The mask set for a particular part may be determined by

examining the markings on top of the part. Below the part

number is a string of characters. The first two characters are
the last two characters of the mask set code. If there are only

four digits the part is the G7F mask set. The last four digits,

the date code, show when the part was manufactured.

These four digits represent year and week. For example a

ceramic part marked:

is a T5A mask set made the twelfth week of 1980.

DMA/BREQ

The DMA/BREQ input provides a method of suspending

execution and acquiring the MPU bus for another use, as

shown in Figure 13. Typical uses include DMA and dynamic

memory refresh.
A low level on this pin will stop instruction execution at the

end of the current cycle unless pre-empted by self-refresh.
The MPU will acknowledge DMA/BREQ by setting BA and

BS to a one. The requesting device will now have up to 15

bus cycles before the MPU retrieves the bus for self- refresh.

Self-refresh requires one bus cycle with a leading and trailing

dead cycle. See Figure 14. The self-refresh counter is only
cleared if DMA/BREQ is inactive for two or more MPU

cycles. Typically, the DMA controller will request to use the bus

by asserting DMA/BREQ pin low on the leading edge of E.
When the MPU replies by setting BA and BS to a one, that

cycle will be a dead cycle used to transfer bus mastership to
the DMA controller.

False memory accesses may be prevented during any dead

cycles by developing a system DMAVMA signal which is
LOW in any cycle when BA has changed.

FIGURE 11 - E/Q RELATIONSHIP

Start of Cycle
I

End of Cycle (Latch Data)

\ 0.5 V

tAVS-
Q

/ \

J \

I Address Valid |

NOTE: Waveform measurements for all inputs and outputs are specified at logic high 2.0 V and logic low 0.8 V unless otherwise specified.

* The on-board clock generator furnishes E and Q to both the system and the MPU. When MRDY is pulled low, both the system clocks and the
internal MPU clocks are stretched. Assertion of DMA/BREQ input stops the internal MPU clocks while allowing the external system clocks to

RUN (i.e., release the bus to a DMA controller). The internal MPU clocks resume operation after DMA/BREQ is released or after 16 bus cycles
(14 DMA, two dead), whichever occurs first. While DMA/BREQ is asserted it is sometimes necessary to pull MRDY low to allow DMA
to/from slow memory/peripherals. As both MRDY and DMA/BREQ control the internal MPU clocks, care must be exercised not to violate

the maximum tcyc specification for MRDY or DMA/BREQ. (Maximum tcvc during MRDY or DMA/BREQ is 16 ̂ s.)

MOTOROLA Semiconductor Products Inc.
12

When BA goes low (either as a result of DMA/BREQ =
HIGH or MRU self-refresh), the DMA device should be taken
off the bus. Another dead cycle will elapse before the MPU

accesses memory to allow transfer of bus mastership
without contention.

MPU OPERATION

This sequence begins after RESET and is repeated indefinite-

ly unless altered by a special instruction or hardware occur-

rence. Software instructions that alter normal MPU opera-

tion are: SWI, SWI2, SWI3, CWAI, RTI, and SYNC. An in-

terrupt, HALT, or DMA/BREQ can also alter the normal ex-
ecution of instructions. Figure 15 illustrates the flowchart for

the MC6809.

During normal operation, the MPU fetches an instruction

from memory and then executes the requested function.

FIGURE 12 - MRDY TIMING AND SYNCHRONIZATION
(a) Timing

y ̂ \
MRDY

^.

< >
-e^-

/

^PCS

■i~

^

(b) Synchronization

4.0 MHz

Oscillator

XTAL

EXTAL

39

ri 38

Part of MC6809 ̂ ^pDY

74LS04

36

MRDY Stretch

Active Low

Chip Select
for Slow

Memory or -

Peripheral j-

+ 5

1 k

tAWt
14

CLR

Q <

D
PR

T

MRDY

Synchronization

A2 R/C

74121

A1

II

Values

Chosen

as Req'd

MRDY Stretch

Stretch = 0.7 RC To Memory

® MOTOROLA Semiconductor Products Inc.

FIGURE 13 - TYPICAL DMA TIMING (<14 CYCLES)

MPU ^

/ "^^^"^^ / ̂ ^^~^-^.^^'^.

^~\
DMA/BREQ

BA, BS

DMAVMA

^^^

< Dead >
DMA

/ ̂ __/ _^ V
/IZ77^

•tpcs

Dead >

•^MPU

/^_J^
-tpcs

-tAQ

\

/ \ y V
ADDR
(MPU)

ADDR
(DMAC)

> <:

< >

FIGURE 14 - AUTO-REFRESH DMA TIMING (>14 CYCLES)
(REVERSE CYCLE STEALING)

fy-n
DMAVMA is a signal which is developed externally, but is a system requirement for DMA. Refer to ApDlication Note AN-820.

NOTE: Waveform measurements for all inputs and outputs are specified at logic high 2.0 V and logic low 0.8 V unless otherwise specified.

rA) MOTOROLA Semiconductor Products Inc.
14

FIGURE 15 - FLOWCHART FOR MC6809 INSTRUCTIONS

I
r

CO

o"
 o

&

3

§•

O

3"

O

(RES
ET

^

Sequenc
e

J

O-^DPR
1— ̂ R/W

1— »-F, I

Cir NMI Logic

Disarm NMI

Y

^n^'eq^
^

\
In

1— »-BA

♦ 1^*-BS

0-^>BA 1
0— »^S

Y

^RESET^

Vector -

RESET FFEE

_L
Stack PC, U, Y,

X, DP, B, A, CC

SWI2

or

SWI3^

7j n=:^ [

(Resum
e ̂

Processi
ng
J

Bus State
BA

BS

Running

0 0

Interrupt or Reset Acknowledge
0 1

Sync Acknowledge
1 0

Halt or Bus Grant Acknowledge
1 1

0-»6A, BS|

Note: Asserting RESET will result in entering the reset sequence from any point in the flowchart.

ADDRESSING MODES

The basic instructions of any computer are greatly entianc-

ed by the presence of powerful addressing nnodes. The

MC6809 has the most complete set of addressing modes

available on any microcomputer today. For example, the

MC6809 has 59 basic instructions; however, it recognizes

1464 different variations of instructions and addressing

modes. The addressing modes support modern program-

ming techniques. The following addressing modes are avail-
able on the MC6809:

Inherent (includes accumulator)
Immediate

Extended

Extended Indirect
Direct

Register
Indexed

Zero-Offset
Constant Offset

Accumulator Offset

Auto Increment/Decrement

Indexed Indirect
Relative

Short/ Long Relative Branching

Program Counter Relative Addressing

INHERENT (INCLUDES ACCUMULATOR)

In this addressing mode, the opcode of the instruction

contains all the address information necessary. Examples of
inherent addressing are: ABX, DAA, SWI, ASRA, and
CLRB.

IMMEDIATE ADDRESSING

In immediate addressing, the effective address of the data

is the location immediately following the opcode (i.e., the

data to be used in the instruction immediately following the
opcode of the instruction). The MC6809 uses both 8- and

16-bit immediate values depending on the size of argument
specified by the opcode. Examples of instructions with im-

mediate addressing are:
IDA #$20

LDX #$F000

LDY #CAT

NOTE

signifies Immediate addressing; $ signifies hexa-
decimal value.

EXTENDED ADDRESSING

In extended addressing, the contents of the two bytes im-

mediately following the opcode fully specify the 16-bit effec-
tive address used by the instruction. Note that the address

generated by an extended instruction defines an absolute

address and is not position independent. Examples of ex-
tended addressing include:

IDA CAT

STX MOUSE

LDD $2(300

EXTENDED INDIRECT - As in the special case of indexed
addressing (discussed below), one level of indirection may

be added to extended addressing. In extended indirect, the

two bytes following the postbyte of an indexed instruction
contain the address of the data.

LDA [CAT]

LDX [$FFFE]
STU [DOG]

DIRECT ADDRESSING

Direct addressing is similar to extended addressing except

that only one byte of address follows the opcode. This byte

specifies the lower eight bits of the address to be used. The

upper eight bits of the address are supplied by the direct

page register. Since only one byte of address is required in
direct addressing, this mode requires less memory and

executes faster than extended addressing. Of course, only

256 locations (one page) can be accessed without redefining

the contents of the DP register. Since the DP register is set

to $00 on reset, direct addressing on the MC6809 is compati-
ble with direct addressing on the M6800. Indirection is not

allowed in direct addressing. Some examples of direct
addressing are:

LDA $30

SETDP $10 (assembler directive)
LDB $1030

LDD < CAT

NOTE

< is an assembler directive which forces direct
addressing.

REGISTER ADDRESSING

Some opcodes are followed by a byte that defines a

register or set of registers to be used by the instruction. This

is called a postbyte. Some examples of register addressing
are:

TFR X, Y Transfers X into Y

EXG A, B Exchanges A with B
PSHS A, B, X, Y Push Y, X, B and A onto S

PULU X, Y, D Pull D, X, and Y from U

INDEXED ADDRESSING

In all indexed addressing, one of the pointer registers (X,

Y, U, S, and sometimes PC) is used in a calculation of the ef-

fective address of the operand to be used by the instruction.

Five basic types of indexing are available and are discussed

below. The postbyte of an indexed instruction specifies the

basic type and variation of the addressing mode as well as

the pointer register to be used. Figure 16 lists the legal for-
mats for the postbyte. Table 2 gives the assembler form and

the number of cycles and bytes added to the basic values for

indexed addressing for each variation.

MOTOROLA Semiconductor Products Inc.

FIGURE 16 - INDEXED ADDRESSING POSTBYTE
REGISTER BIT ASSIGNMENTS

Postbyte Register Bit
Indexed

Addressing

Mode 7 6 5 4 3 2 1 0

0 R

R.

d d d d d EA = ,R + 5 Bit Offset

R R 0 0 0 0 0

,R + R R i 0 0 0 1

,R+ + R R 0 0 0 1 0

,-R R R 0 0 1 1

,--R R R 0 1 0 0 EA = ,R +0 Offset

R R 0 1 0 1 EA =,R + ACCB Offset
R R 0 1 1 0 EA = ,R + ACCA Offset
R R 0 0 0 EA = ,R +8 Bit Offset
R R 0 0 1 EA = ,R +16 Bit Offset
R R 0 1 1 EA = ,R +D Offset
X X 1 0 0 EA = ,PC +8 Bit Offset
X X 1 0 1 EA = ,PC +16 Bit Offset
R R 1 1 1 EA = [, Address]

X = Don't Care
d = Offset Bit

. _ 0=Not indirect
' ~ 1 = Indirect

— Addressing Mode Field

• Indirect Field

(Sign bit when by = 0)

-Register Field: RR

00 = X
01 = Y
10 = U
11 = S

ZERO-OFFSET INDEXED - In this mode, the selected

pointer register contains the effective address of the data to

be used by the instruction. This is the fastest indexing mode.

Examples are:
LDD 0,X

LDA S

CONSTANT OFFSET INDEXED - In this mode, a twos-
complement offset and the contents of one of the pointer

registers are added to form the effective address of the

operand. The pointer register's initial content is unchanged
by the addition.

Three sizes of offsets are available:

5bit (-16to +15)

8 bit (-128 to +127)

16 bit (-32768 to + 32767)

The twos complement 5-bit offset is included in the post-
byte and, therefore, is most efficient in use of bytes and

cycles. The twos complement 8-bit offset is contained in a
single byte following the postbyte. The twos complement
16-bit offset is in the two bytes following the postbyte. In

most cases the programmer need not be concerned with the
size of this offset since the assembler will select the optimal
size automatically.

Examples of constant-offset indexing are:
LDA 23,X

LDX -2,S
LDY 300,X

LDU CAT,Y

TABLE 2 - INDEXED ADDRESSING MODE

Type Forms

Non Indirect J
+ +

Indirect
+ +

Assembler

Form

Postbyte

Opcode

Assembler

Form

Postbyte

Opcode
Constant Offset From R No Offset

,R

1RR00100 0 0

[,R]

1RR10100
3 0

(2s Complement Offsets) 5- Bit Offset

n, R

ORRnnnnn 1 0
defaults to 8-bit

8-Bit Offset

n, R

1RR01000 1 1
[n, R] 1RR11000

4 1

16-Bit Offset

n, R

1RR01001 4 2
[n, R] 1RR11001

7 2

Accumulator Offset From R
(2s Complement Offsets)

A Register Offset
A, R

1RR00110 1 0
[A, R] 1RR10110

4 0

B Register Offset B, R
1RR00101 1 0

[B, R] 1RR10101
4 0

D Register Offset
D, R

1RR01011 4 0
[D, R]

1RR11011
7 0

Auto Increment/ Decrement R Increment By 1

,R +

1RR00000 2 0
not allowed

Increment By 2

,R+ +

1RR00001 3 0
[,R++]

1RR10001
6 0

Decrement By 1

,-R

1RR00010 2 0
not allowed

Decrement By 2

,--R

1RR00011 3 0
[,--R] 1RR10011

6 0

Constant Offset From PC
(2s Complement Offsets)

8- Bit Offset

n, PCR
IxxOllOO 1 1

[n, PCR] IxxlllOO
4 1

16- Bit Offset
n, PCR

IxxOIIOI 5 2
[n, PCR]

IxxlllOI 8 2

Extended Indirect 16-Bit Address - - - - [n]
10011111

5 2

R = X, Y, U, or S

x = Don't Care

RR:

00=X
01 = Y
10=U
T1 = S

^and \ indicate tfie number of additional cycles and bytes for the particular variation.

(g) MOTOROLA Semiconductor Products Inc.
17

ACCUMULATOR-OFFSET INDEXED - This mode is

similar to constant offset indexed except that the twos-
complement value in one of the accumulators (A, B, or D)

and the contents of one of the pointer registers are added to

form the effective address of the operand. The contents of

both the accumulator and the pointer register are unchanged
by the addition. The postbyte specifies which accumulator

to use as an offset and no additional bytes are required. The

advantage of an accumulator offset is that the value of the

offset can be calculated by a program at run-time.
Some examples are:

LDA B,Y

LDX D,Y

LEAX B,X

AUTO INCREMENT/DECREMENT INDEXED - In the

auto increment addressing mode, the pointer register con-
tains the address of the operand. Then, after the pointer

register is used it is incremented by one or two. This address-

ing mode is useful in stepping through tables, moving data,
or for the creation of software stacks. In auto decrement, the

pointer register is decremented prior to use as the address of
the data. The use of auto decrement is similar to that of auto

increment; but the tables, etc., are scanned from the high to
low addresses. The size of the increment/ decrement can be

either one or two to allow for tables of either 8- or 16-bit data

to be accessed and is selectable by the programmer. The

pre-decrement, post-increment nature of these modes
allows them to be used to create additional software stacks

that behave identically to the U and S stacks.

Some examples of the auto increment/decrement ad-
dressing modes are:

LDA ,X +

STD ;y-^ +
LDB ,-Y

LDX , - - S

Care should be taken in performing operations on 16-bit
pointer registers (X, Y, U, S) where the same register is used
to calculate the effective address.

Consider the following instruction:

STXO,X-h-h (X initialized to 0)

The desired result is to store zero in locations $0000 and

$0001 then increment X to point to $0002. In reality, the
following occurs:

0-*temp calculate the EA; temp is a holding register
X-i-2-^X perform auto increment

X-^(temp) do store operation

INDEXED INDIRECT - All of the indexing modes, with
the exception of auto increment/ decrement by one or a

± 4-bit offset, may have an additional level of indirection
specified. In indirect addressing, the effective address is con-

tained at the location specified by the contents of the index

register plus any offset. In the example below, the A ac-
cumulator is loaded indirectly using an effective address

calculated from the index register and an offset.

$0100

Before Execution

A=XX (don't care) X=$FOOO

LDA [$10,X] EA is now $F010

$F010 $F1 $F150 is now the

$F011 $50 new EA

$F150
$AA After Execution

A=$AA Actual Data Loaded
X = $F000

All modes of indexed indirect are included except those

which are meaningless (e.g., auto increment/ decrement by

one indirect). Some examples of indexed indirect are:
LDA [,X]

LDD [10,S]

LDA [B,Y]

LDD [,X++]

RELATIVE ADDRESSING

The byte(s) following the branch opcode is (are) treated as

a signed offset which may be added to the program counter.
If the branch condition is true, then the calculated address

(PC -I- signed offset) is loaded into the program counter.
Program execution continues at the new location as in-

dicated by the PC; short (one byte offset) and long (two
bytes offset) relative addressing modes are available. All of

memory can be reached in long relative addressing as an ef-
fective address is interpreted modulo 2l6. Some examples of

relative addressing are:

BEQ
CAT (short)

BGT
DOG (short)

CAT
LBEQ

RAT

(long)

DOG LBGT RABBIT

(long)

RAT

RABBIT
NOP

NOP

PROGRAM COUNTER RELATIVE - The PC can be used

as the pointer register with 8- or 16-bit signed offsets. As in
relative addressing, the offset is added to the current PC to
create the effective address. The effective address is then

used as the address of the operand or data. Program counter

relative addressing is used for writing position independent

programs. Tables related to a particular routine will maintain

the same relationship after the routine is moved, if

referenced relative to the program counter. Examples are:
LDA CAT, PCR

LEAX TABLE, PCR

Since program counter relative is a type of indexing, an
additional level of indirection is available.

LDA [CAT, PCR]

LDU [DOG, PCR]

MOTOROLA Semiconductor Products Inc.
18

INSTRUCTION SET

The instruction set of the MC6809E is similar to that of the

MC6800 and is upward compatible at the source code level.

The number of opcodes has been reduced from 72 to 59, but

because of the expanded architecture and additional ad-

dressing modes, the number of available opcodes (with dif-
ferent addressing modes) has risen from 197 to 1464.

Some of the new instructions are described in detail

below.

PSHU/PSHS

The push instructions have the capability of pushing onto

either the hardware stack (S) or user stack (U) any single

register or set of registers with a single instruction.

PULU/PULS

The pull instructions have the same capability of the push

instruction, in reverse order. The byte immediately following

the push or pull opcode determines which register or

registers are to be pushed or pulled. The actual push/ pull se-
quence is fixed; each bit defines a unique register to push or

pull, as shown below.

Transfer/ Exchange Postbyte
 1 1 1

Source Destination
■ i 1

Register Field
0000= D (A:B)

1000=A
0001 = X 1001 = B

0010=Y
1010=CCR

0011 = U
1011 = DPR

0100=S
0101 = PC

NOTE
All other combinations are undefined and INVALID.

LEAX/LEAY/LEAU/LEAS

The LEA (load effective address) works by calculating the
effective address used in an indexed instruction and stores

that address value, rather than the data at that address, in a

pointer register. This makes all the features of the internal

addressing hardware available to the programmer. Some of

the implications of this instruction are illustrated in Table 3.
The LEA instruction also allows the user to access data

and tables in a position independent manner. For example;

LEAX MSG1, PCR

LBSR PDATA (print message routine)

CCR
A

B
DPR
X

Y

S/U PC

Push/ Pull Postbyte Stacking Order
Pull Order

I
CC
A

B DP

X Hi
X Lo

Y Hi
Y Lo

U/S Hi

U/S Lo
PC Hi
PC Lo

t
Push Order

Increasing
Memory

i
TFR/EXG

Within the MC6809E, any register may be transferred to or

exchanged with another of like size, i.e., 8 bit to 8 bit or 16

bit to 16 bit. Bits 4-7 of postbye define the source register,

while bits 0-3 represent the destination register. These are
denoted as follows:

MSG1 FCC 'MESSAGE'

This sample program prints: 'MESSAGE'. By writing
MSG1 , PCR, the assembler computes the distance between

the present address and MSG1. This result is placed as a
constant into the LEAX instruction which will be indexed

from the PC value at the time of execution. No matter where

the code is located when it is executed, the computed offset

from the PC will put the absolute address of MSG1 into the X

pointer register. This code is totally position independent.

The LEA instructions are very powerful and use an internal

holding register (temp). Care must be exercised when using
the LEA instructions with the auto increment and auto

decrement addressing modes due to the sequence of internal

operations. The LEA internal sequence is outlined as follows:

LEAa ,b-i- (any of the 16-bit pointer registers X, Y,
U, or S may be substituted for a and b)

1. b-*temp (calculate the EA)

2. b-Fl— ̂ b (modify b, postincrement)

3. temp-^ a (load a)

LEAa , - b

1. b- 1-*-temp (calculate EA with predecrement)

2. b-1-^b (modify b, predecrement)

3. temp-^ a (load a)

TABLE 3 - LEA EXAMPLES

Instruction
Operation

Comment
LEAX 10, X

X + 10 -«-x
Adds 5-Bit Constant 10 to X

LEAX 500, X

X + 500-^X
Adds 16-Bit Constant 500 to X

LEAY A, Y
Y + A -* Y

Adds 8-Bit A Accumulator to Y

LEAY D, Y
Y + D -^ Y

Adds 16-Bit D Accumulator to Y

LEAU -10, U U - 10 ̂ U Substracts 10 from U

LEAS -10, S
S - 10 -^ S Used to Reserve Area on Stack

LEAS 10, S
S + 10 ̂ S Used to 'Clean Up' Stack

LEAX 5, S

S + 5 -*X
Transfers As Well As Adds

(g) MOTOROLA Semiconductor Products Inc. 19

Auto increment-by-two and auto decrennent-by-two instruc-
tions worl< similarly. Note that LEAX ,X+ does not change

X; however, LEAX, -X does decrement; LEAX 1, X should
be used to increment X by one.

MUL

Multiplies the unsigned binary numbers in the A and B ac-
cumulator and places the unsigned result into the 16-bit D

accumulator. The unsigned multiply also allows multiple-
precision multiplications.

LONG AND SHORT RELATIVE BRANCHES

The MC6809 has the capability of program counter relative

branching throughout the entire memory map. In this mode,

if the branch is to be taken, the 8- or 16-bit signed offset is
added to the value of the program counter to be used as the
effective address. This allows the program to branch

anywhere in the 64K memory map. Position-independent
code can be easily generated through the use of relative

branching. Both short (8-bit) and long (16-bit) branches are
available.

SYNC

After encountering a sync instruction, the MPU enters a

sync state, stops processing instructions, and waits for an

interrupt. If the pending interrupt is non-maskable (NMD or

maskable (FIRQ, IRQ) with its mask bit (F or I) clear, the pro-

cessor will clear the sync state and perform the normal inter-
rupt stacking and service routine. Since FIRQ and IRQ are

not edge-triggered, a low level with a minimum duration of
three bus cycles is required to assure that the interrupt will

be taken. If the pending interrupt is maskable (FIRQ, IRQ)
with its mask bit (F or I) set, the processor will clear the sync

state and continue processing by executing the next in-line
instruction. Figure 18 depicts sync timing.

SOFTWARE INTERRUPTS

A software interrupt is an instruction which will cause an

interrupt and its associated vector fetch. These software in-
terrupts are useful in operating system calls, software

debugging, trace operations, memory mapping, and soft-
ware development systems. Three levels of SWI are available

on the MC68(D9, and are prioritized in the following order:

SWI, SWI2, SWI3.

16-BIT OPERATION

The MC6809 has the capability of processing 16-bit data.
These instructions include loads, stores, compares, adds,

subtracts, transfers, exchanges, pushes, and pulls.

CYCLE-BY-CYCLE OPERATION

The address bus cycle-by-cycle performance chart (Figure

18) illustrates the memory-access sequence corresponding
to each possible instruction and addressing mode in the

MC6809. Each instruction begins with an opcode fetch.

While that opcode is being internally decoded, the next pro-
gram byte is always fetched. (Most instructions will use the

next byte, so this technique considerably speeds through-
put.) Next, the operation of each opcode will follow the

flowchart. VMA is an indication of FFFF-je on the address
bus, R/W=1 and BS = 0. The following examples illustrate
the use of the chart.

Example 1: LBSR (Branch Taken)

Before Execution SP= FOOO

$8000

$A000 CAT

LBSR CAT

CYCLE-BY-CYCLE FLOW

Cycle #

Address Data R/W Description

1 8000

17
Opcode Fetch 2

8001
20 Offset High Byte

3 8002 00 Offset Low Byte

4 FFFF
» VMA Cycle

5 FFFF
« VMA Cycle

6
AOOO #

Computed Branch Address
7 FFFF * VMA Cycle

8 EFFF 80 0 Stack High Order Byte of
Return Address

9 EFFE 03 0 Stack Low Order Byte of

Return Address

Example 2: DEC (Extended)

$8000 DEC $A000

$A8000 $80

CYCLE-BY-CYCLE FLOW

Cycle #

Address
Data

R/W
Description

1 8000 7A
Opcode Fetch 2

8001
AO Operand Address, High Byte

3 8002 00 Operand Address, Low Byte
4 FFFF

* VMA Cycle

5 AOOO

80

Read the Data
6 FFFF

* VMA Cycle

7 AOOO 7F 0 Store the Decremented Data

The data bus has the data at that particular address.

INSTRUCTION SET TABLES

The instructions of the MC6809 have been broken down

into five different categories. They are as follows:

8-bit operation (Table 4)

16-bit operation (Table 5)

Index register/ stack pointer instructions (Table 6)
Relative branches (long or short) (Table 7)

Miscellaneous instructions (Table 8)

Hexadecimal values for the instructions are given in
Table 9.

PROGRAMMING AID

Figure 19 contains a compilation of data that will assist in

programming the MC6809.

MOTOROLA Semiconductor Products Inc.

FIGURE 17 - SYNC TIMING

i

r

o'
 o

&

"0

S
&
o

cS"

S"

o

Address

Data

R/W

BA

BS

IRQ /'
FIRQ^

NMI V

Last

Cycle Of Sync
Previous Opcode
Inst. Fetch Execute

K >\< ^4< >f*

Last Cycle

of Sync Instruct
instruction. Fetch

>W >4< H

XIDCIJ(JEXIEI> -e^-

_X X A X /"

^^
■

V\ A X

XUDs
XZD\

■<?"
/

ec^

^=53

rc

\

j~L_rL

^DCDCDC
See Note 1

\ A _X X_

y

\

See Note 2

■tpcs

NOTES:

1 . If the associated mask bit is set when the interrupt is_requested, this cycle will be an instruction fetch from address location PC + 1 . However, if the in-
terrupt is accepted (NIVFl or an unmasked FIRQ or IRQ) interrupt processing continues with this cycle as m on Figures 9 and 10 (Interrupt Timing).

2. If mask bits are clear, IRQ and RRQ must be held low for three cycles to guarantee interrupt to be taken, although only one cycle is necessary to bring

the processor out of SYNC.

3. Waveform measurements for all inputs and outputs are specified at logic high 2.0 V and logic low 0.8 V unless otherwise specified.

FIGURE 18 - CYCLE-BY-CYCLE PERFORMANCE (Sheet 1 of 5)

NOTES:

! . Each state shows

Data Bus

Address Bu

Offset High

NNNN -1(2i

Opcode Fetch

NNNN

Relative Addressing Mode

Opcode, 2nd Byte

NNNN+1

LBCC

LBGT
LB to,

LBMl,

LBRA, LBR.N,
iBvc. Leys

LBGS: LBEQ„1.8G6,
IBHI, LBHSliiliiil
LBLS, LBtt,

LBNE, LBPli

BSR

Offset High

NNNN+1i2)

Address NNNN is location o* opcode.

f opcode is a two byte opcode subseojen:

addresses are in parenthesis (-).

~ "^wo-bv'e opcodes ighted.

Offset Low

Don't Care

BCC, BCS, BEQ, BGE, BGT, BHI,

BHS, BLE, BLD, BLS, BLT, BMI,

BNE, BPL, BRA, BRN,

BSR, BVC, BVS

^

No

Don't Care

FFFF

-.'^BSR or^^

Yes

\.BSR^^^

i No

Don't Care

Sub. Dest Addr

^ Don't Care

FFFF

1
Return Addr. Low

Stacl<

i
Return Addr, High

Stack ' • r i

^ MOTOROLA Semiconductor Products Inc.

FIGURE 18 - CYCLE-BY-CYCLE PERFORMANCE (Sheet 2 of 5)

^ nherent Addressing Mode L ^
ARX

RT.c;

.c,A,n

RTl
'

c;vMr'

1

* ASRA/B i
■in

1

-■-i

\ '
Don't Care Don't Care CLRA/B

COMA/B

DAA

Don't Care
Don't Care Don't Care Don't Care

CCMask
Condition Code Register

NNNNtI NNNN+1 NNNN+1 NNNN + 112]
NNNN+1

NNNN^I NNNN+1
Stack

1 i DECA/B
INCA/B

LSLA/B
LSRA/B

* i ♦ 1

"• 1

•
Don't Care

PC High Don't Care
Don't Care

CCR
f

Don't Care
J Don't Care
1

FFFF Stack
FFFF

FFFF

Stack
NNNN+2 Don't Care

3-State

* NOP * * 1 i

3-State

1
PC Low ROLA/B

RORA/B

SEX

Don't Care PC Low

..^^N ̂^ 1

Don't Care

\
Stack

FFFF
Stack

^ E=1P ̂ S^

X'^lnterruDt ̂ ^ No |

FFFF

^^ Interrupt ̂ w No

1
TSTA/B

i 1
^s^Present?^^

1
Don't Care Don't Care Don't Care

PC High

|Ye
s

^YiCT

PC Low

FFFF NNNN+ 1
FFFF

Stack A Register
T

Stack

Don't Care

T"-"

1 i Stack i

Interrupt

Vector High

S^State

Don't Care User Stack Low i
PC High

FFFX
FFFF Stack

B Register

Stack ^ i 1
Stack

i
Interrupt

Vector Low Don't Care User Stack High i User Stack Low

FFFF Stack

Direct Page

Register
Stack

FFFX+1

i-

1 1 i
Stack

Don't Care
Y Register Low User Stack High

Don't Care

1
FFFF

Stack
Stack

FFFF
X Register High

i 1 1 1

Stack
Don't Care

Y Register High
Y Register Low i

FFFF
Stack Stack

X Register Low i i i
Stack

Don't Care
X Register Low

Y Register High i
FFFF

Stack
Stack

Y Register High

f i 1
Stack

Don't Care
X Register High

X Register Low i
FFFF

Stack

Stack
Y Register Low i i

'

Stack Direct Page

Register

X Register High

i
Stack

Stack User Stack High

1
1 Stack Direct Page

Register
B Register ^

Stack
User Stack Low

Stack i Stack i
A Register

B Register .

"*

Stack

'
Stack

PC High

\ i
Stack Condition

Code Register

A Register i
Stack Stack PC Low 1

1
Stack

}
'

Don't Care ^
FFFF Don't Care

1 Stack Interrupt

Vector High

FFFX

i Interrupt

Vector Low

FFFX + 1

i
Don't Care

FFFF

i

^

- (M) MOTOROLA Semiconductor Products Inc.

^

23

FIGURE 18 - CYCLE-BY-CYCLE PERFORMANCE (Sheet 3 of 5)

MOTOROLA Semiconductor Products inc.

24

FIGURE 18 - CYCLE-BY-CYCLE PERFORMANCE (Sheet 4 of 5)

^
Indexed Addressing Mode

0 Offset

From R '

5-Bit Offset

From R '

8-Bit Offset? 16-Bit Offset T A/ B Offset T

From R if From R | From R f

D Offset T From R \
Inc/Dec T
R by 1 f

Inc/Dec

R by 2 ■ '

=C± 16-Bit

Offset ' ■

Extended T
Indirect \

PC ± 8-Bit

Offset

'
Don't Care Don't Care Offset

Offset Higfi
Don't Care Don't Care

Don't Care Don't Care
Offset Higfi

Address High Offset

NNNN + 2(3) NNNN + 2(3I NNNN*2(3I NNNN 1-2(3)
NNNN + 2{31 NNNN + 2(3)

NNNN + 2(3)
NNNN-)-2(3)

NNNN -1-2(3)

NNNN + 2(3) NNNN + 2(3)

i \ i 1 \ \ \ \ 1
Don't Care Don't Care Offset Low Don't Care Don't Care

Don't Care Don't Care

Offset Low Address Low

Don't Care

FFFF
FFFF

NNNN-)-3l41

FFFF
NNNN + 314) FFFF FFFF NNNN-f3(4)

NNNN + 3(4)
FFFF

1 1 \ 1 i
Don't Care

Don't Care Don't Care
Don't Care Don't Care

Don't Care

NNNN + 4(5) NNNN + 415)
FFFF FFFF

NNNN + 4(5) NNNN + 4(5)

\ \ \
Don't Care

Don't Care Don't Care
Don't Care

FFFF FFFF FFFF

FFFF

1 1
Don't Care

Don't Care * Don't Care

FFFF
FFFF FFFF

Don't Care

FFFF

• ' ' \ \ 1 ' 1

^

Constant Offset from R
No Offset 8-Bit Offset

16-Bit Offset

Accumulator Offset from R

A Register Offset

B Register Offset
D Register Offset

Auto Increment/ Decrement R
Increment by 2

Decrement by 2

Constant Offset from PC
8-Bit Offset

16-bit Offset

Extended Indirect
16-Bit Address

The index register is incremented following the indexed access.

Index Register

Index Register + Offset Byte

Index Register + Offset High Byte; Offset Low Byte

Index Register h- A Register
Index Register + B Register

Index Register + D Register

Index Register

Index Register

Program Counter + Offset Byte
Program Counter + Offset High Byte: Offset Low Byte

Address High Byte; Addres Low Byte

(g) MOTOROLA Semiconductor Products Inc. 25

FIGURE 18 - CYCLE-BY-CYCLE PERFORMANCE (Sheet 5 of 5)

Effective Address _
ANDCC,

ORCC

mmediate

Onlv)

JMP
lAli Except

Immediate)

ADCA/B,

ADDA/B,
ANDA/B,

BITA/B,
CMPA/B,

EDRA/B,
LDA/B,
ORA/B,

SBCA/B,

SUBA/B

'

STA/B
All Except

mmediate)

LDD,
LDS,

LDU,

LDX, v&x

STD, STS,

STU, STX,

STY lAII

Except

Immediate)

1

\SL, ASR,

:lr, com,
DEC, INC,
SL, LSR,

JEG, ROL,

?DR (All xcept

mmediate)

TST

iAIi Except

immediate)

ADDD, CMPD

CMPS, C^flPU, CMPX, CMPY,

SUBD

(
1

JSR LEAS,

All Except LEAV,
mmediate) LEAX,

LEAY
' ' (Indexec

Only)

Register IWrite)

Don't Care

EA Sub. Address

< \ \ \ \ '
Data Register High Register High (Write) Data

Data

Data High Don't Care Don't Care

NNNN+1

EA
EA

EA EA

FFFF

FFFF

EA

i 1 i i * *
\

Don't Care Register Low

Don't Care Don't Care
Data Low PC Low (Write)

Register Low
IWrite) NNNN-r2 EA+1

FFFF

FFFF

EA + 1 Stack

EA + 1 i i i i
Data Data (Write)

Don't Care
Don't Care

PC High (Write)

EA

EA

FFFF

FFFF
Stack

' ' 1 ' i ' \ \ 1 \

Effective Address (EA)

Constant Offset from R
No Offset
5- Bit Offset

B-Bit Offset

16-Bit Offset

Index Register

Index Register

Index Register + Post Byte

Index Register + Post Byte High, Post Byte Low

Accumulator Offset from R

A Register Offset

B Register Offset
D Register Offset

Auto Increment/Decrement R
Incrennent by 1
Increment by 2

Decrement by 1

Decrement by 2

Index Register - A Register

Index Register -r B Register
Index Register + D Register

index Register
Index Register

Index Register

Index Register

Constant Offset from PC
8-Bit Offset
16-Bit Offset

Direct

Extended

Program Counter + Offset Bvte

P'ogram Counter - Offset H^gh Bvte- Offset Lov. B,

Direct Page Register: Address Low

Address High Address Low

MOTOROLA Semiconductor Products Inc.

26

TABLE 4 - 8-BIT ACCUMULATOR AND MEMORY INSTRUCTIONS
Mnemonic(s)

Operation ADCA, ADCB Add memory to accumulator with carry

ADDA, ADDB Add memory to accumulator

ANDA, ANDB And memory with accumulator

ASL, ASIA, ASLB Arithmetic shift of accumulator or memory left

ASR, ASRA, ASRB Arithmetic shift of accumulator or memory right

BITA, BITB Bit test memory with accumulator

CLR, CLRA, CLRB Clear accumulator or memory location

CMPA, CMPB Compare memory from accumulator

COM, COMA, COMB Complement accumulator or memory location

DAA Decimal adjust A accumulator

DEC, DECA, DECB Decrement accumulator or memory location

EORA, EORB Exclusive or memory with accumulator

EXG R1, R2 Exchange R1 with R2 (R1, R2 = A, B, CC, DP)

INC, INCA, INCB Increment accumulator or memory location

LDA, LDB Load accumulator from memory

LSI, LSLA, LSLB Logical shift left accumulator or memory location

LSR, LSRA, LSRB Logical shift right accumulator or memory location

MUL Unsigned multiply (A x B — D)

NEC, NEGA, NEGB Negate accumulator or memory

ORA, ORB Or memory with accumulator

ROL, ROLA, ROLB Rotate accumulator or memory left

ROR, RORA, RORB Rotate accumulator or memory right

SBCA, SBCB Subtract memory from accumulator with borrow

STA, STB Store accumulator to memory

SUBA, SUBB Subtract memory from accumulator

TST, TSTA, TSTB Test accumulator or memory location

TFR R1, R2 Transfer R1 to R2 (R1, R2 = A, B, CC, DP)

NOTE; A, B, CC, or DP may be pushed to (pulled from) stack with either PSHS, PSHU
(PULS,PULU) instructions.

TABLE 5 - 16-BIT ACCUMULATOR AND MEMORY INSTRUCTIONS
Mnemonic(s)

Operation
ADDD Add memory to D accumulator
CMPD Compare memory from D accumulator
EXG D, R Exchange D with X, Y, S, U, or PC
LDD

Load D accumulator from memory

SEX Sign Extend B accumulator into A accumulator

STD Store D accumulator to memory

SUBD Subtract memory from D accumulator

TFR D, R Transfer D to X, Y, S, U, or PC

TFR R, D Transfer X, Y, S, U, or PC to D

NOTE: D may be pushed (pulled) to stack with either PSHS, PSHU (PULS,
PULU) instructions.

® MOTOROLA Semiconductor Products Inc.

27

TABLE 6 - INDEX REGISTER/ STACK POINTER INSTRUCTIONS

Instruction Description

CMPS, CMPU Compare memory from stack pointer

CMPX, CMPY Compare memory from index register

EXG R1, R2 Exchange D, X, Y, X, U, or PC with D, X Y, S, U, or PC

LEAS, LEAU Load effective address into stack pointer

LEAX, LEAY Load effective address into index register

LDS, LDU Load stack pointer from memory

LDX, LDY Load index register from memory
PSHS Push A, B, CC, DP, D, X, Y, U, or PC onto hardware stack
PSHU Push A, B, CC, DP, D, X, Y, S, or PC onto user stack
PULS Pull A, B, CC, DP, D, X, Y, U, or PC from hardware stack
PULU

Pull A, B, CC, DP, D, X, Y, S, or PC from hardware stack

STS, STU Store stack pointer to memory

STX, STY Store index register to memory

TFR R1, R2 Transfer D, X, Y, S, U or PC to D. X, Y, S, U, or PC

ABX Add B accumulator to X (unsigned!

TABLE 7 - BRANCH INSTRUCTIONS

instruction | Description
SIMPLE BRANCHES

BEQ, LBEQ Branch if equal

BNE, LBNE Branch if not equal

BMI, LBMI Branch if minus

BPL, LBPL Branch if plus

BCS, LBCS Branch if carry set.

BCC, LBCC Branch if carry clear

BVS, LBVS Branch if overflow set

BVC, LBVC Branch if overflow clear

SIGNED BRANCHES |

BGT, LBGT Branch if greater (signed)

BVS, LBVS Branch if invalid 2s complement result

BGE, LBGE Branch if greater than or equal (signed)

BEQ, LBEQ Branch if equal

BNE, LBNE Branch if not equal

BLE, LBLE Branch if less than or equal (signed)

BVC, LBVC Branch if valid 2s complement result

BLT, LBLT Branch if less than (signed)

UNSIGNED BRANCHES |

BHI, LBHI Branch if higher (unsigned)

BCC, LBCC Branch if higher or same (unsigned)

BHS, LBHS Branch if higher or same (unsigned)

BEQ, LBEQ Branch if equal

BNE, LBNE Branch if not equal

BLS, LBLS Branch if lower or same (unsigned)

BCS, LBCS Branch if lower (unsigned)

BLO, LBLO Branch if lower (unsigned)

OTHER BRANCHES

BSR, LBSR Branch to subroutine

BRA, LBRA Branch always

BRN, LBRN Branch never

TABLE 8 - MISCELLANEOUS INSTRUCTIONS

Instruction Description
ANDCC AND condition code register

CWAI AND condition code register, then wait for interrupt
NOP

No operation
ORCC OR condition code register

JMP

Jump

JSR Jump to subroutine

RTI Return from interrupt

RTS Return from subroutine

SWI, SWI2, SWI3 Software interrupt (absolute indirect)
SVNC

Synchronize with interrupt line

MOTOROLA Semiconductor Products Inc.
28

TABLE 9 -
HEXADECIMAL VALUES OF MACHINE CODES

OP Mnem Mode ~ #
OP

Mnem Mode ~ #

OP

Mnem
Mode

_ #
00 NEG Direct 6 2 30 LEAX Indexed

4 + 2 + 60
NEG Indexed

6 + 2 +
01 * i k

31

LEAY M 4 + 2 +

61

* f 02 * 32 LEAS W 4 +

2 +

62 *
03 COM 6 2 33 LEAU Indexed

4 + 2 + 63 COM

6 +

2 +

04 LSR 6 2

34

PSHS Immed

5 +

2

64

LSR

6 +

2 +
05 *

35
PULS Immed 5 + 2 65 *

06 ROR 6 2 36 PSHU Immed

5 +

2 66 ROR 6 +

2 +
07

ASR 6 2 37 PULU Immed

5 +

2 67 ASR

6 + 2 +

08 ASL, LSL 6 2 38 » - 68 ASL, LSL

6 + 2 +

09 ROL 6 2

39

RTS
Inherent

5 69
ROL

6 +

2 +

OA DEC 6 2 3A ABX) k 3

6A

DEC

6 +

2 +
OB *

3B
RTI

6/15

6B

*
OC INC 6 2 3C CWAI \ f

>20

2 6C
INC

6 + 2 +
OD TST 6 2

3D

MUL
Inherent

11 6D TST 6 + 2 +
OE JMP

\ f 3 2

3E

* - 6E JMP i 3 + 2 +
OF CLR Direct 6 2 3F

SWI
Inherent

19

6F

CLR Indexed
6+ 2 +

10 Page 2
_ _ _

40

NEGA
Inherent

2

70

NEG Extended
7 3

11 Page 3 - - - 41 * / ̂ 71 * A
12 NOP Inherent 2 1

42
*

72

*
13 SYNC Inherent

>4

1

43

COMA 2 73 COM 7 3

14

*■

44 LSRA 2 74
LSR

7 3
15 *

45

* "

75 *
16 LBRA Relative 5 3

46
RORA 2

76

ROR 7 3
17 LBSR Relative 9 3 47 ASRA 2 77 ASR 7 3
18 *

48

ASLA, LSLA 2

78

ASL, LSL 7 3
19 DAA Inherent 2 1 49 ROLA 2

79

ROL 7 3
1A ORCC Immed 3 2

4A

DECA 2 7A
DEC

7 3
IB * -

4B
*

7B

*
1C ANDCC Immed 3 2

4C
INCA

2

7C
INC

7 3
ID SEX Inherent 2 1

4D

TSTA 2

7D
TST

7 3
IE EXG Immed 8 2

4E
* ^ ' 7E JMP

T Extended
4 3

IF TFR Immed 6 2 4F CLRA Inherent 2 7F CLR 7 3

20 BRA Relative 3 2 50 NEGB Inherent 2 80 SUBA
Immed

2 2
21 BRN

/I

{ 3 2

51

* i I 81 CMPA > k 2 2
22 BHI 3 2 52 # 82 SBCA 2 2
23 BLS 3 2 53 COMB 2 83 SUBD 4 3
24 BHS, BCC 3 2

54

LSRB 2 84
ANDA

2 2
25 BLO, BCS 3 2 55 * 85 BITA 2 2
26 BNE 3 2 56 RORB 2 86 LDA 2 2
27 BEQ 3 2

57

ASRB 2 87 *

28 BVC 3 2 58 ASLB, LSLB 2 88 EORA 2 2
29 BVS 3 2 59 ROLB 2 89 ADCA 2 2
2A BPL 3 2

5A

DECB 2 8A ORA 2 2
2B BMI 3 2 5B * 8B ADDA

)|

1 2 2
2C BGE 3 2 5C INCB

2

8C

CMPX
Immed

4 3
2D BLT 3 2 5D TSTB 2 8D BSR Relative 7 2
2E BGT

T
3 2 5E »

\ < 8E LDX
Immed

3 3
2F BLE Relative 3 2

5F

CLRB Inherent 2 1

8F

*

LEGE ND:
-Number of T i/IPU cycles (less possible push Dull or indexed-mode cycles)
Number of p rogram bytes
* Denotes unu sed opcode

(M) M€>TO§
70I.A Semiconductor Prod M M^\^^% f »*^% ucts inc.

29

TABLE 9 - HEXADECIMAL VALUES OF MACHINE CODES (CONTINUED)

OP Mnem Mode
~ #

OP

Mnem Mode ~ #

OP

Mnem Mode
~ #

90 SUBA Direct 4 2 CO SUBB
Imnned 2 2

91 CMPA A 4 2

CI
CMPB A 2 2

Page 2 and 3 Machine
92 SBCA 4 2 C2 SBCB

2 2
Codes 93 SUBD 6 2 C3 ADDD 4 3

94 ANDA 4 2

C4

ANDB 2 2 1021
LBRN

Relative 5 4

95 BITA 4 2 C5 BITB
immed 2 2 1022 LBHI A 5(6)

4

96 LDA 4 2 C6
LDB

Immed 2 2 1023 LBLS 5(6) 4

97 STA 4 2 C7
* k

1024
LBHS, LBCC

5(6)
4

98 EORA 4 2 C8 EORB
2 2 1025 LBCS, LBLO

5(6)
4

99 ADCA 4 2

C9

ADCB 2 2 1026 LBNE 5(6) 4

9A ORA 4 2

CA ORB
2 2 1027 LBEQ

5(6)
4

9B ADDA 4 2 CB ADDB 2 2
1028

LBVC 5(6) 4
9C CMPX 6 2

CC LDD
3 3 1029 LBVS

5(6)
4

9D JSR 7 2 CD * V
102 A

LBPL
5(6)

4

9E
LDX

> i 5 2 CE
LDU

Immed 3 3

1Q2B

LB Ml

5(6)
4

9F STX Direct 5 2

CF

* 102C
102D

102E

102F

103F

1083

108C
108E
1093

109C

109E
109F

LBGE

LBLT

LBGT
LBLE
SWI2
CMPD

CMPY

LDY
CMPD

CMPY

LDY

STY

1
Relative

Inherent

Immed

1
Immed

Direct

Direct

5(6) 5(6) 5(6)

5(6)

20

5

5

4

7

7

6

6

4

4

4

4

2

4

4

4

3

3

3

3

AO

A1
A2

A3

A4
A5

A6

A7
A8

A9

SUBA

CMPA

SBCA

SUBD

ANDA

BITA

LDA

STA

EORA

ADCA

Inde

>

<ed 4 +

4 +

4 +

6 +
4 +
4 +

4 +

4 +

4 +

4 +

2 +
2 +

2 +

2 +

2 +

2 +
2 +

2 +

2 +

2 +

DO

D1 D2

D3

D4 D5

D6

D7

D8 D9

SUBB

CMPB

SBCB
ADDD

ANDB

BITB

LDB

STB
EORB

ADCB

Dire JCt 4

4

4

6

4

4

4

4

4

4

4

4

5

5

5

5

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

AA

AB
AC

ORA

ADDA

CMPX

4 +
4 +

6 +

2 +
2 +

2^

DA DB

DC

ORB

ADDB

LDD

STD LDU

STU

10 A3

10AC

10AE

CMPD

CMPY
LDY

Indexed

A

1^

1 +

6 +

3 +
3 +

3 +

AD JSR 7 +
2 +

DD DE

DF

^ / 10AF STY
Indexed

6 +

3 +

AE

AF

LDX

STX Inde xed 5 +

5 +
2 +

2 +

>

Direct

10B3

10BC

10BE

10BF

CMPD

CMPY

LDY

STY

Extended

A

8

8

7

7

4

4

4

4 EO

El

SUBB

CMPB

1 A A 4 +

4 +

2 +

2 +

BO SUBA Extended 5 3

inde^"

T
Extended

B1 CMPA) k 5 3 E2 SBCB

4 +

2 +

10CE LDS Immed 4 4

B2 SBCA 5 3 E3 ADDD

6 + 2 +

10DE
LDS Direct 6 3

B3 SUBD 7 3

E4

ANDB 4 +

2 +

lODF STS Direct 6 3

B4 ANDA 5 3 E5 BITB
4 +

2 +

lOEE LDS Indexed

6 + 3 +

B5 BITA 5 3 E6
LDB

4 +

2 +

10EF STS
Indexed

6 +

3 +
B6 LDA 5 3 E7

STB
4 +

2 +

10FE LDS Extended 7 4

B7 STA 5 3 E8 EORB 4 +

2 +
10FF STS

Extended 7 4

B8 EORA 5 3 E9 ADCB 4 +

2 +

113F
SWI3

Inherent 20 2

B9 ADCA 5 3

EA
ORB

4 +

2 +

1183 CMPU Immed 5 4

BA ORA 5 3
EB

ADDB

4 + 2 +

118C
CMPS

Immed 5 4

BB ADDA 5 3 EC LDD

5 +

2 +

1193
CMPU

Direct 7 3

BC CMPX 7 3 ED
STD

5 + 2 +

119C CMPS
Direct 7 3

BD JSR 8 3 EE LDU ^ r

5 +

2 +

11A3 CMPU Indexed

7 + 3 +
BE

BF

LDX

STX

> ' 6 3

3
EF

STU Indexed

5 + 2 +

11AC

11B3
11BC

CMPS

CMPU

CMPS

Indexed
Extended

Extended
7 +
8

8

3 +

4

4

Extended
FO

F1
SUBB

CMPB

Extendec
5

5

3

3 t k

F2 SBCB 5 3 F3

ADDD 7 3

F4

ANDB 5 3

F5 BITB
5 3

F6
LDB

5 3

F7
STB

5 3

NOTE; All unused opco

and illegal

des are both un defined

F8

F9

FA

EORB
ADCB

ORB
\i

5

5

5

3

3

3

FB ADDB Extended 5 3 FC
LDD Extended 6 3

FD STD A 6 3 FE

LDU

>'

6 3 FF

STU
Extendec 6 3

MOTOROLA. Semiconductor Products Inc.

30

FIGURE 19 - PROGRAMMING AID

Instruction Forms

Addressing Modes J

Immediate 1 Direct | Indexed | Extended | Inherent |

Description
5 3 2 10

Op

~ #

Op

- #

Op

- #

Op

- #

Op

~ # H N Z V C

ABX

3A

3 1
B + X-X (Unsigned)

ADC ADCA 89 ? 2

99

4 2 A9 4 +

2 +

B9 5 3 A+M+C-A t t I t t

ADCB
C9

2 2 D9 4 2 E9
4 +

2 +

F9

5 3 3+M+C-B t J J t t

ADD ADDA
8B

2 2
9B

4 2 AB 4 +

2 +

BB 5 3 A+M-A J t t t t

ADDB CB 2 2 DB 4 2

EB

4 + 2 +

FB 5 3 B+M-B I t t : t

ADDD C3 4 3 D3 6 2 E3

6 +

2 +

F3

7 3 D+M:M+1-D • t t t t

AND ANDA 84 ? 2

94

4 2

A4

4 +

2 +
B4

5 3 A A M-A • J : U •
ANDB

CA

? 2
D4

4 2

E4
4 +

2 +
F4

5 3 BAM-B • t : 0 •
ANDCC 1C 3 2 CCAIMM-00 _| 7

ASL ASLA
ASLB

ASL 08 6 2 68

6 + 2 +

78

7 3

48

58

2

2

1
1

A\„

<

8 1111 -^0 8 1111

m' c

37 bo « 1 t 1 I

ASR ASRA
ASRB

ASR

07

6 2

67
6 +

2 +
77

7 3

47

57

2
2

1
1 }H

- —
« t I . I

-^ 8 11.1

M' by bo (^ « t : • I

BIT BITA
8B

7 ? 95 4 2

A5

4 +

2 +
B5

5 3
Bit Test A (M A A) • t t 0 •

BITB
C5

2 2 D5 4 2 E5 4 +

2 +

F5 5 3
Bit Test B (M A Bi • t I 0 •

CLR CLRA
CLRB

4F

5F

2
2

1

1
0-A .0100
0-B .0100

CLR
OF

6 2

6F
6 + 2 +

7F 7 3 0-M .0100

CMP CMPA
81 ? 2

91

4 2

Al 4 + 2 +
Bl

5 3 Compare M from A 8 t t t I

CMPB n ? 7

D1

4 2

El
4 +

2 +
F1

5 3 Compare M from B 8 t t t I

CMPD 10

a?!

5 4

10

93

7 3

10

A3

7 +

3 +

10

B3

8 4
Compare M;M + 1 from D . J t I t

CMPS 11
80

5 4

11 90

7 3 11 AC

7 +

3 +

11

BO

8 4
Compare M:M+ 1 from S • t t t t

CMPU
11 9P,

5 4 11

93

7 3 11 A3

7 +

3 +

11

B3

8 4
Compare M:M + 1 from U .tilt

CMPX 80
4 3 90 6 2 AC

6 +

2 +

BO 7 3
Compare M:M + 1 from X . 1 t I I

CMPY

10

80

5 4 10

90

7 3

10

AC

7 +

3 +

10

BO

8 4
Compare M:M+ 1 from Y • t t t t

 7, — 7~

COM COMA
COMB

43

53

2
2

1
1

A-A . t t 0 1

B-B . : t 0 1

M-M • I : 0 1 COM 03 6 2

63 6 +

2 +

73

7 3

CWAI 30 2:20 2 CC A IMM-CO Wait for Interrupt 7

DAA
19 2 1

Decimal Adjust A . t t 0 :

DEC DECA
DECB

4A

5A

2
2

1
1

A-1-A . t t t .
B-l-B . ! J t •

DEC
OA

6 2

6A 6 +

2 + 7A

/ 3 M-1-M . t t t •

EOR EORA 88 ? 2 98 4 2 A8

4 + 2 +

B8 5 3
A^M-A • t I 0 •
B-V-M-B . t : 0 •

EORB CB 2 2 D8 4 2 E8

4 + 2 +

F8

5 3

EXG R1, R2 IE 8 2 R1-R22

INC INCA
INCB

40

5C

2

2

1

1
A + 1 - A • t t : •

B+1-B .lit.

INC
00

6 2 60

6 +

2 +

70 7 3 M + 1 - M • \ \ \ •

JMP
OE

3 2

6E
3 + 2 +

7E 4 3 Ea3-PC

JSR
9D 7 2

AD
7 +

2 + BD

8 3

Jump to Subroutine • • • • •

LD LDA

LDB

86
06

2

2

2

2 96 D6

4
4

2

2

A6

E6

4 +

4 +

2 +

2 +

B6
F6

5

5

3

3
M-A . t : 0 •

M-B .110.

M:M + 1-D . : : 0 .
M:M + 1-S . I 1 0 .

LDD 00
3 3 DC 5 2 EC

5 + 2 +

FC 6 3

LDS
10

4 4

10

6 3

10

6 +

3 +

10

7 4 OF

DE

EE

FE

M:M + 1-U .110.
M:M + 1-X . 1 I 0 .

M:M + 1-Y .110.

LDU OF 3 3
DE

5 2 EE

5 + 2 +

FE 6 3

LDX

8F
3 3

9E

5 2

AE

5 +

2 +

BE 6 3

LDY
10 4 4 10 6 3 10

6 +

3 +

10 7 4
8F 9F

AE BE

LEA LEAS
LEAU

LEAX

LEAY

32
33

30

31

4 +

44

4-^
44

2 +
2 +

2 +

- 2 +
Ea3-S

Ea3-U

Ea3-X . . t . .

Ea3-Y . . t . .

LEGEND: M

OP Operation Code (Hexadecimal) —

Number of MPU Cycles H

Number of Program Bytes N

+ Arithmetic Pius Z

- Arithmetic Minus V
• Multiply

Complement of M
Transfer Into

Half-carry (from bit 3)

Negative (sign bit)

Zero result

Overflow, 2's complement

t

• Not Affected

CC Condition Code Register

: Concatenation

V Logical or

A Logical and

C Carry from ALU "^ Logical Exclusive or

MOTOROLA Semiconductor Products Inc. -
31

FIGU

RE 19 -

PROGRAMMING AID (CONTINUED)

Instruction Forms

Addressing Modes

5 3 2
1 0 Immediate Direct

Indexed 1 Extended Inherent

Description

Op

~ #

Op

1 -

Op

~ #

Op

~

it

Op

-
1 * H N Z

V c

LSL LSL A

LSLB

LSL 08 6 2 68

6-

2 +

78

7 3

48

58

2

2 1
1

1

t

t 1

t t

t 1

<-0

b7

bO

LSR LSRA

LSRB

LSR

04

6 2

64
6 +

2 +

74 7 3

44

54

2

2

1

1 k\

0

0

0

• :
• t

• 1

BSO^
MJ

Wl
37 bo c

MUL
3D 11 1 Ax B-D (Unsigned) •

• T

NEG NEGA

NEGB
NEG

00 6 2 60

6 +

2 +

70

7 3

40

50

2

2

1

1
A+1-A

B+l-B

Mt 1-M

8

8

8

:
t

t

t t

t t I 1

NOP

12

2 1 No Operation • • • •
OR ORA

ORB
ORCC

8A

CA
1A

2

2

3

2

2

2

9A

DA

4

4

2

2

AA

EA

4-H

4-
2 +

2 +

BA

FA

5

5
i

3

3 A V M-A

B V M-B
CC V iiviiVi — CC

1

1

I
t

0 •

/
PSH PSHS

PSHU 34 36

5 + 4

5 + 4

2

2
Push Registers on S Stack

Push Registers on U Stack

•
•

•
•

• •
• •

PUL PULS
PULU

35

37

5 + 4

5+4

2

2
Pull Registers fronn S Stack

Pull Registers from U Stack

•
•

•
•

• •
• •

ROL ROLA
ROLB

ROL
09 6 2 69

6 +

2 +

79

7 3

49

59

2

2

1
1

t

t

1

I 1 1

! t ;

: I

"J 1 i—i B LOf

Ml lJ

^T^

M "^

1 1
by bo

ROR RORA

RORB

ROR 06 6 2

66

6^

2 +

76

7 3

46

56

2

2

1

1

M) LJ

1

I

J

\

• 1 • ;

• J

>■

TUJ
by bo

RTI
3B

6/15

1 Return From Interrupt
7

RTS
i

39

5 1 Return from Subroutine • • • • •
SBC SBCA

SBCB

82

C2

2

2

2

2

92

D2

4

4

2

2

A2

E2

A*

4*

2-

2-

B2

F2

5

5

3

3

A-M-C-A

B-M-C-B
8

8

I
:

:
:

t I

1 1
SEX ID 2 1 Sign Extend B into A

t I
 '

0 •

ST STA
STB

STD.
STS

STU

STX

STY

9/

D7

DD

10

DF
DF

9F

10

9F

4

4

5

6

5

5

6

2

2

2

3

2

2

3

A7

E7 ED

10

EF EF

AF
10

AF

4 +

4 +

5-

6*
5-

5 +

6+i

2*

2 +

2-

3-
2-

2 + 3-^

B7

F7

FD

10

FF

FF

BF

10

BF

5

5

6

7

6

6

7

3

3

3

4

3

3

4

A-M

B-M

D-M:M* 1

S - M : M - 1

U - M : M ̂ 1

X-M:M- 1
Y-M:M* 1

t

!
1

!
I

t

t
I

I

! 1

I :

1 !

0 •

0 •

0 •

0 •

0 • i

0 •

0 •

SUB SUBA

SUBB

SUBD

80

CO
83

2

2

4

2

2

3

90

DO

93

4

4

6

2

2

2

AO
EO A3

4 +

4 +

6 +

2 +

2 +

2 +

BO
FO

B3

5

5

7

3

3

3

A-M- A

B-M-B

D-M:M+1-D

8

8
•

1

I

t

tit I

t i I t

til 1
SWI

SWl6 SWI26

SWI36

3F

10

3F

11

3F

19

20 20

1

2

1

Software Interrupt 1

Software interrupt 2

Software Interrupt 3

•
•

•

•
•

•

• 1

•

• • • •

• •

SYNC

13

>4

1 Synchronize to Interrupt • • •
• •

TFR R1, R2 IF 6 2

R1-R22

• • •
• •

TST TSTA
TSTB

TST OD 6 2 6D

6 +

2 +

7D

7 3

4D

5D

2

2

1

1
Test A Test B

Test M

•
•
•

T
!
t

t

I

t

0 •

0 • 0 •

NOTES:

1 . This column gives a base cycle and byte count. To obtain total count, add the values obtained from the INDEXED ADDRESSING MODE table Table 2.

2. R1 and R2 may be any pair of 8 bit or any pair of 16 bit registers.
The 8 bit registers are: A, B, CC, DP
The 16 bit registers are: X, Y, U, S, D, PC

EA is the effective address.

The PSH and PUL instructions require 5 cycles plus 1 cycle for each byte pushed or pulled.
5(6) means: 5 cycles if branch not taken, 6 cycles if taken (Branch instructions!,
SWI sets I and F bits. SWI2 and SWI3 do not affsct ! gnd F.

Conditions Codes set as a direct result of the instruction.

Vaue of half-carry flag is undefined.

Special Case - Carry set if b7 is SET.

(W) MOTOROLM Semiconductor Products inc.
32

FIGURE 19 - PROGRAMMING AID (CONTINUED)

Branch Instructions

Instruction Forms

Addressing

Mode

Description

5 3 2 1 0 Relative

OP

~5

H N Z V c
BCC BCC

LBCC 24

10

24

3
5(6)

2

4
Branch C = 0

Long Branch
C = 0

BCS BCS

LBCS

25

10

25

3
5(6)

2

4
Branch C=l
Long Branch

C=1
BEQ BEQ

LBEQ 27

10

27

3
5(6)

2

4
Branch Z=l

Long Branch
Z = 0

BGE BGE
LBGE

2C 10

2C

3

5(6)

2

4
Branch > Zero

Long Branch > Zero

BGT BGT
LBGT

2E 10

2E

3

5(6)

2

4
Branch > Zero

Long Branch > Zero

BHI BHI
LBHI

22 10

22

3

5(6)

2

4
Branch Higher

Long Branch Higher

BHS BHS

LBHS

24

10

24

3

5(6)

2

4

Branch Higher
or Same

Long Branch Higher
or Same

BLE BLE

LBLE

2F 10

2F

3

5(6)

2

4
Branch < Zero

Long Branch < Zero

BLO BLO

LBLO

25

10 25
3

5(6)
2

4
Branch lower

Long Branch Lower

Addressing

Instruction Forms

Mode

Description

5 3 2 1 0
Relative

OP

~5

H N Z V c
BLS BLS

LBLS

23
10
23 3

5(6)

2

4

Branch Lower
or Same

Long Branch Lower
or Same

BLT BLT LBLT

2D

10

2D

3

5(6)

2

4
Branch < Zero

Long Branch < Zero

BMI

BMI
LBMI

2B

10

2B

3

5(6)

2

4
Branch Minus

Long Branch Minus

BNE BNE

LBNE

26

10

26

3

5(6)

2

4
Branch Z = 0

Long Branch
Z^tO

BPL BPL

LBPL
2A

10

2A

3 5(6) 2

4

Branch Plus

Long Branch Plus

BRA

BRA

20

3 2 Branch Always | •

LBRA

16

5 3 Long Branch Always
•

BRN

BRN
LBRN

21

10

21

3

5

2

4
Branch Never

Long Branch Never

BSR BSR
LBSR

8D

17

7

9

2

3
Branch to Subroutine

Long Branch to
Subroutine

BVC BVC

LBVC

28

10

28

3

5(6)

2

4 Branch V = 0

Long Branch V = 0

BVS BVS

LBVS

29

10

29

3 5(6) 2

4 Branch V=l
Long Branch
V=l

SIMPLE BRANCHES

OP
~ #

BRA 20 3 2

LBRA

16
5 3

BRN 21 3 2

LBRN 1021 5 4

BSR 8D 7 2

LBSR 17 9 3

SIMPLE CONDITIONAL BRANCHES (Notes 1-4)
Test True OP False OP

N = 1 BMI
2B BPL 2A

Z=1
BEQ

27

BNE 26

V=1
BVS 29 BVC 28

0 = 1 BCS
25 BCC

24

SIGNED CONDITIONAL BRANCHES (Notes 1-4)
Test True OP False OP

r>m BGT 2E BLE

2F r>m BGE 2C BLT 2D

r=m BEQ

27
BNE

26

r<m BLE
2F

BGT
2E

r<m BLT 2D BGE 2C

UNSIGNED CONDITIONAL BRANCHES (Notes 1-4)
Test True OP False OP
r>m

BHI

22.

BLS

23
r>m

BHS

24

BLO 25
r=m

BEQ

27
BNE

26
r<m

BLS 23

BHI

22

r<nn
BLQ 25

BHS

24

NOTES:

1 . All conditional branches have both short and long variations.
2. All short branches are two bytes and require three cycles.

3. All conditional long branches are formed by prefixing the short branch opcode with $10 and using a 16-bit destination offset.
4. All conditional long branches require four bytes and six cycles if the branch is taken or five cycles if the branch is not taken.

MOTOROLA Semiconductor Products Inc.
33

PACKAGE DIMENSIONS

nl-lr-ll-ll-■l^^r1l^^^^nl-lr-lnnr^^ll^^l^l^.^^l^

O
"jwuyijijijvuyijuyijijijijw'Jij

W'.^

NOTES:

1. POSITIONAL TOLERANCE OF LEADS (D),
SHALL BE WITHIN 0.25 mm (0.010) AT

MAXIMUM MATERIAL CONDITION, IN
RELATION TO SEATING PLANE AND

EACH OTHER.

2. DIMENSION L TO CENTER OF LEADS
WHEN FORMED PARALLEL.

3. DIMENSION B DOES NOT INCLUDE

MOLD FLASH.

DIM

MILLIMETERS INCHES
MIN MAX MIN

MAX

A 51.69 52.45

2.035 2.065

B 13.72
14.22

0.540
0.560 C

3.94

5.08

0.155
0.200

D 0.36 0.56

0.014

0.022

F

1.02 1.52

0.040 0.060

G 2.54 BSC 0.100 BSC 1
H 1.65

2.16

0.065 0.085
J 0.20 0.38 0.008

0,015 K 2.92

3.43

0.115 0.135

L 15.24 BSC 0.600 BSC 1

M

0°

15"

0°

15"

N
Q.51

1.02

0.020 0.040

P SUFFIX
PLASTIC PACKAGE

CASE711-(»

40

>.
 FA]

NOTES:

1. DIMENSIONGaD IS DATUM.
2. POSITIONAL TOLERANCE FOR LEADS:

1-^ 1 0.25(0.010) (m)|t|A(vD|

3. m IS SEATING PLANE.

4. DIMENSION "L"TO CENTER OF LEADS
WHEN FORMED PARALLEL.

5. DIMENSIONING AND TOLERANCING

PER ANSI Y14.5, 1973.

DIM

MILLIMETERS
INCHES 1 MIN

MAX MIN
MAX

A 50.29

51.31

1.980

2.020 B
14.63

15.49

0.576
0.610

C

2.79

4.32 0.110 0.170
D

0.38
0.53

0.015

0.021
F

0.76

1.52

0.030

0.060

G
2.54 BSC

0.100 BSC 1

J 0.20
0.33

0.008

0.013
K

2.54

4.57

0.100
0.180

L
14.99

15.65

0.590
0.616 M -

10"

-

lOo

N
1.02

1.52
0.040

0.060

L SUFFIX
CERAMIC PACKAGE

CASE 715-05

Qr<r,r,r,r,nnr,nr,r,nnnrinnr,^

t^\j\jiJ\jij\j\j\jijijUiJ'JiJ\J\J'JijQ

NOTES:

1. DIMENSION-A-IS DATUM.
2. POSITIONAL TOLERANCE

FOR LEADS:

I -♦- I ♦0.25(0.010)(S)lT|A®

3. QD IS SEATING PLANE.

4. DIMENSION LTD CENTER

OF LEADS WHEN FORMED
PARALLEL

5. DIMENSION A AND B

INCLUDES MENISCUS.

DIM
MILLIMETERS

INCHES J

MIN MAX MIN MAX
A

51.31
53.24 2.020 2.096

B
12.70 15.49 0.500

0.610 C 4.06

5.84
0.160 0.230

0
0.38

0.56
0.015

0.022

F 1.27

1.65

0.050
0.065 G 2.54 BSC 0.100 BSC 1

J

0.20

0.30 0.008

0.012 K 3.18

4.06
0.125

0.160

L 15.24 BSC 0.600 BSC 1

M

5°

150

5''

15"

N
0.51

1.27
0.020

0.050

8 SUFFIX
CERDIP PACKAiGE

CASE 734-03

V^. MOTOROLA Semiconductor Products inc.

34

ORDERING INFORMATION

Package Order
Type Frequency Temperature Range Number

Ceramic 1.0 MHz
0°C to 70°C

MC6809L

L Suffix 1.0 MHz -40°C to85°C MC6809CL

1.5 MHz 0°C to 70 °C MC68A09L
1.5 MHz -40°C to85°C MC68A09CL
2.0 MHz 0°C to 70 °C MC68B09L
2.0 MHz -40°C to85°C MC68B09CL

Plastic 1.0 MHz 0°C to 70°C MC6809P

P Suffix 1.0 MHz -40°Cto85°C MC6809CP
1.5 MHz 0°C to 70 °C MC68A09P

1.5 MHz -40°C to85°C MC68A09CP
2.0 MHz 0°Cto70°C MC68B09P

2.0 MHz -40°C to85°C MC68B09CP Cerdip
1.0 MHz

0°C to 70 °C
MC6809S

S Suffix 1.0 MHz -40°C to85°C MC6809CS

1.5 MHz 0°C to 70°C
MC68A09S

1.5 MHz -40°C to85°C MC68A09CS

2.0 MHz 0°C to70°C
MC68B09S

2.0 MHz -40°C to85°C MC68B09CS

MOTOROLA Semiconductor Products Inc.

35

Motorola reserves the right to make changes to any products herein to improve reliability, function or design. Motorola does not assume any liability arising
out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

• m^j ayj^mTK.im^i'^p^^^a^jm^ SBmiCOndUCtOf pfQ^fjQf^

inc.

3501 ED BLUESTEIN BLVD., AUSTIN. TEXAS 78721 • A SUBSiQiARV OF MOTOROLA INC

